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ABSTRACT
Although hyperspectral images have advantages, compared to other earth observation products (e.g.,
RGB or multispectral images), in terms of the spectral characterization of the materials that compose
them, they face other problems, such as the high cost of acquisition and storage. In addition, the low
availability of this data is due to the fact that only some space agencies and the private sector have the
financial resources or licenses to use it, for security reasons. If labels are required from direct observation
on the earth's surface, the options are reduced to a few datasets available for research and applications
development. This work provides to the scientific and developer community, fully labeled hyperspectral
images in three classes: soil, water, and vegetation. The products of this simulator could help to the
development of post-processing tasks, for example; classification, noise reduction, and atmospheric
correction. The proposed method is to procedurally generate a matrix of labels of those three classes,
each of the labels will describe a pixel of a virtual world, subsequently rendered with high-definition
textures and captured in Unreal Engine. Using the label matrix, the hyperspectral signature is generated
with a neural network model based on a multi-layer perceptron, implemented in Python, previously
trained with real hyperspectral data from the "University of Houston'' dataset of 144 spectral bands,
captured using the Compact Airborne Spectrographic Imager (CASI) sensor in 2012. In addition, thermal
and photonic noise are added to the final product, with the proportion and signal-to-noise ratio (SNR)
defined by the user. The prediction results of the neural network show the characteristic spectral
signatures of the three classes used, adding variations depending on the reflectance of the pixel in the
simulator.
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INTRODUCTION
This work presents to the scientific

community a generator of completely labeled
hyperspectral images. This framework can be
used for research and development of
post-processing algorithms.

Hyperspectral imaging provides hundreds
of frequency bands in the visible infrared and
ultraviolet wavelengths of the electromagnetic
spectrum, in order to obtain spectral signatures.
The main problem is the scarcity of
Hyperspectral Images (HSI) since most of them
are held by the private sector or space
agencies. Therefore, they are not accessible to
the public. These products can be requested,
but require administrative processes, as they
may contain sensitive information.

To obtain an HSI it is necessary to have
specialized hardware which is prohibitively
expensive for most researchers. Another option
is to work with popular public datasets, but

most of them are a relatively small single
image, in addition to the fact that not all the
pixels are labeled.

Hence, this work proposes to solve this
problem generating labeled hyperspectral data
from a completely generated map that does not
belong to any location in the world, making use
of common tools and techniques used for
procedural map generation for video games.

The use of tools such as Unreal Engine
(UE) works in our favor, since they are
optimized for the use of the Graphics Processor
Unit (GPU) to make the render of the map. In a
matter of a few seconds the map and Ground
Truth (GT) is ready to subsequently generate
the hyperspectral data.

There are different methods to generate
spectral signatures, summarized in Table 1.
This categorization is presented in (Han and
Kerekes, 2017).
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Table 1. Categories of spectral signature
generation techniques.

Category Description
Empirical
approach

Used in the development of
satellite missions, based on
the architecture of spectral
sensors (Guerin et.al., 2011;
Hook et.al. 2001).

Image
Modification

Insert artificial pixels into real
images to generate
hyperspectral data. Usually,
extracting endmembers to
generate another HSI
(Agarwal et.al., 2004; Eches
et.al., 2010).

Statistical
Approach

Create synthetic imagery
through the use of statistical
or probabilistic models, or
more recently, machine
learning algorithms (North,
1996; Rivera et.al., 2015).

Physical
Modeling

Simulate light interacting with
3D models of a simulated
land. Incorporate Ray Tracing
models and account of true
radiometry and propagation
of light from its source
through the atmosphere off of
the surface, and into the
sensor aperture (Govaerts &
Verstraete, 1998; Jensen,
2001; Gastellu-Etchegorry
et.al., 2004, 2015; Ontiveros
et.al., 2011; Jakubowski
et.al., 2007; Scanlan et.al.,
2004).

Based on Table 1, our work belongs to the
statistical approach category, since the spectral
signature is generated based on the prediction
of a neural network trained with real
hyperspectral data. This work aims to test the
concept of spectral signature generation based
on a procedurally generated GT and its
reflectance, simulated on a video game engine.

CONTENT
This section presents a big picture of the

proposed framework which is divided into two
major blocks. The first one is an
implementation in C++, which corresponds to
Ground Truth (GT) generation and the
rendering for image capture. The second block
refers to the Python implementation, where an
Artificial Neural Network (ANN) is trained with

real hyperspectral data. The products of this
framework are the generated hyperspectral
data with its corresponding GT labels. Also a
high resolution RGB image with a quick
visualization through a user interface.
1. Procedural Map Generation: For
Ground Truth (GT) generation, we have
implemented an algorithm based on Perlin
noise for our application, described in general
terms in (Perlin, 1985). Considering a
third-order tensor , representing a𝓖 ∈ ℝ𝑋×𝑌×2

grid, with horizontal and vertical lines. For𝑋 𝑌
each intersection, a gradient vector is
generated and assigned at each fiber . The𝒈

𝑥,𝑦,:
gradients are generated randomly (there are not
pre-computed components) by generating a
random angle in radians, where ,θ 0 ≤ θ ≤ 2π
and then, it is computed a unit vector through
the cosine and sine functions of , such that,θ

and . For each grid𝑔
𝑥,𝑦,0

= cos(θ) 𝑔
𝑥,𝑦,1

= sin(θ)
cell (also called quadrants), it is defined a set of
candidate points . For each𝑝 =  (𝑥

𝑖
, 𝑦

𝑗
)

intersection, correspondent to the grid cell
(there are four intersections per cell), it is
computed an offset vector , which is a𝒐

𝑥
𝑖
,𝑦

𝑖

displacement from the intersection to the
candidate point. Then, it is computed the dot
product between the gradient vectors 𝒈

𝑥,𝑦,:
associated with the grid cell, and the offset
vector . Once the four dot products are𝒐

𝑥
𝑖
,𝑦

𝑖

computed, a 2D interpolation is performed,
which is based on a single interpolation on both
axes. Then, these results are interpolated again
to get the value for the altitude map,
corresponding to the candidate point selected.
The Perlin noise generation shown in Figure 1.
The algorithm is described in Table 2.

Figure 1. Steps of Perlin Noise Algorithm.
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Table 2. Perlin Noise Generation algorithm

Perlin Noise Generation Algorithm
( ):𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 𝑎,  𝑏,  𝑡

return 𝑤(𝑎 + 𝑏) +  𝑎

( ):𝐷𝑜𝑡𝐺𝑟𝑖𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝒗
𝑖
,  𝒗

𝑓
, 𝒗 

𝒂 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑐𝑡𝑜𝑟(𝒗
𝑖

+ 𝒗)
𝒃 ← 𝒗

𝑓
− 𝒗

return 𝑑𝑜𝑡(𝑎, 𝑏)

( ):𝑃𝑒𝑟𝑙𝑖𝑛 − 𝑁𝑜𝑖𝑠𝑒 𝒗
𝒗

𝑖
← 𝑓𝑙𝑜𝑜𝑟(𝒗)

𝒗
𝑓

← 𝒗 − 𝒗
𝑖
 

( )𝒂 ←  𝐷𝑜𝑡𝐺𝑟𝑖𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝒗
𝑖
,  𝒗

𝑓
, [0, 0]

( )𝒃 ←  𝐷𝑜𝑡𝐺𝑟𝑖𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝒗
𝑖
,  𝒗

𝑓
, [1, 0]

( )𝒄 ←  𝐷𝑜𝑡𝐺𝑟𝑖𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝒗
𝑖
,  𝒗

𝑓
, [0, 1]

( )𝒅 ←  𝐷𝑜𝑡𝐺𝑟𝑖𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝒗
𝑖
,  𝒗

𝑓
, [1, 1]

( .getX())𝒆 ←  𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 𝒂,  𝒃,  𝒗
𝑓

( .getX())𝒇 ←  𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 𝒄,  𝒅,  𝒗
𝑓

return 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒(𝒆, 𝒇, 𝒗
𝑓
. 𝑔𝑒𝑡𝑌())

The result of the 2D interpolation is
assigned to each element in the altitude𝑎

𝑖,𝑗
 

map, such that , represented in a− 1 ≤ 𝑎
𝑥,𝑦

≤ 1

matrix .𝑨 ∈ ℝ𝑋×𝑌

To achieve a natural distribution of the
GT, more layers are added to the amplitude
map, these layers are called octaves. An octave
is defined as a twice resolution version of the
original grid. The amplitude represents the
contribution of each octave to the final elevation
map and is reduced by a factor of each3

4
octave, described in equation (1):

𝑨
𝑓

=
1

𝑛

∑ 3
4 𝑨

𝑛( )𝑛−1 (1)

The combination of multiple octaves
causes a natural appearance in the elevation
map. For this project, we are using three
octaves. If less octaves are added, it causes an
artificial appearance with more straight lines. If
more octaves are added it would have too much
noise to make a meaningful image, compared
to remote sensing images of the earth surface.

Subsequently, a label matrix is𝑳 ∈ ℕ𝐼×𝐽

computed using the altitude map. Depending on

the altitude at each coordinate, a corresponding
label is assigned. For this work we use three
different labels, corresponding to water, soil and
vegetation. This matrix is used for two
purposes; to generate a pre-texture with a color
representing each label for the map generation
and rendering, and a .csv file, which contains
the GT corresponding to each pixel of the
image, this information is used to predict the
hyperspectral data.
2. Unreal Engine Implementation: Unreal
Engine (UE) is a graphic engine of creation
tools for game development, simulation, and
other real time applications. Has a blueprint
visual scripting system with the concept of
node-based interface to create gameplay
elements within Unreal Editor. We will use this
technology to generate the ground truth and
terrain rendering. Although this software is
widely used in the video games development
area, we will use it for research purposes.
2.1. User Interface: The User Interface (UI)
is handled in a simple way where researchers
set the parameters of the simulator framework.
Some parameters to define by the user are:
Image Resolution ( pixels), Renderization𝑋 × 𝑌
Quality and RGB Image Factor Scale (scale for
the RGB image resolution). The UI sends these
parameters to UE for terrain render, also to the
Python script for spectral data generation. The
user is able to visualize in a hud, the settings
used for virtual world generation, as well a quick
look of the generated virtual world
2.2. Terrain Generation: This section refers
to the static mesh terrain generation, to be
rendered in world space, meaning all the space
in the scene where an object can be placed. For
this, it is needed the sizes, and (in terms of𝑠

𝑥
𝑠

𝑦
the virtual world), and the quality (𝐼 ×  𝐽)
required by the user, previously obtained at the
start of the simulation. Using that data, it
generates the mesh, with a quite simple
process. The main algorithm generates, vertex
by vertex, a grid , filled with data𝑇 ∈  ℝ𝐼×𝐽

structures called vertices . Each one(𝑣
𝑖𝑗

)
contains a 3D vector for its position in world
space; a 2D vector that describes its texture
coordinate (UV), that represents a point on an
image of a 2D texture, defining the percentage
(horizontally and vertically) of how far it is from
the bottom left corner of the image, used by the
Graphics Processor Unit (GPU) to know how to
color each part of the final mesh. Another 3D
vector that is called the normal direction, which
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is just a unit vector pointing in the direction the
vertex is facing, for light calculations and other
techniques that are not used on this project,
because we are rendering a flat surface.
The data for each part of the vertex is filled in
that order. First, the positions are determined𝑝

𝑖𝑗

by . Then, the UV𝑝
𝑖𝑗

= [𝑠
𝑥

· 𝑖
𝐼 ,  𝑠

𝑦
· 𝑗

𝐽 , 0]

coordinates . Finally, for each vertex,𝑡
𝑖𝑗

= [ 𝑖
𝐼 , 𝑗

𝐽 ]
a normal vector is assigned. This𝑛

𝑖𝑗
= [0, 1, 1]

is a vector pointing up, for the UE coordinate
system, and that is because the triangles in the
constructed mesh are facing up, in the direction
of the camera.
Then, the index array is generated, which is an
array of integers. These indices tell the GPU
how to connect each vertex to form triangles,
because this is the simplest shape that can be
used to construct any type of 3D meshes, and it
is a standard for computer graphics (Varcholik,
2014). These indices are generated using a
function named Create Grid Mesh Triangles
provided by the engine, and with the vertices
and indices generated, this data is sent to
another function called Create Mesh Section
also given by the engine, that combines all the
data to construct the final mesh.
2.3. Texture Generation: The terrain needs
a material to be rendered with, simulating a real
earth surface looking terrain view, and to be
displayed to the user interpretation. For this, are
required the ground truth labels, generated in a
previous section, received in the form of a
Red-Green-Blue (RGB) texture, each color
meaning a different label, in case of needing
more labels, they can be made by combinations
of these three. This texture is processed,
applying a blur to it, so that the edges do not
look so defined, but rather blend together, and it
is made by moving in the four directions the
image, by a tiny amount, then adding and
subtracting colors so that, at last, it ends up with
the original image, but with the color sections
blended with each other. This process is made
several times, with different offset values, to
create a nice gradient between the colors.
Thus, with the blurred image, the different
colors, meaning the three RGB colors, or
combination of them, of the texture, are
separated and transformed into its final
textures, as shown in Figure 4. In this case,
each different texture represents a different
terrain surface: water, soil and vegetation.
Then, they are added back together to form the

final texture and now it can be applied to the
terrain’s static mesh.

Figure 2. Ground truth to final texture transformation.

2.4. Image Capture: Once the material is
applied to the terrain it needs to be transformed
back to a texture in order to capture his current
state. First a Render Target (RT) is created and
set in the graphic pipeline, subsequently the
terrain's material is drawn in a quad, and that
quad is rendered in the newly created RT.
Finally it is exported as a HDR image using the
blueprint function that UE provides. With this
approach we get the texture perfectly aligned
with the GT, avoiding camera perspective
problems.
3. Hyperspectral Data Generation: ANNs
use machine learning algorithms to fit a
mathematical model to perform predictions. The
predictions are based on patterns present in the
training data. In this project, we use MLP
instead of a state of the art ANN, because we
wanted to implement a simple prototype to test
the concept. MLP allows us to train and predict
the hyperspectral data faster, given its low
complexity compared to state of the art models.
The model is trained with real hyperspectral
data captured by the Compact Airborne
Spectrographic Imager (CASI)(Babey, 1989).
Captured in 2012 over the University of
Houston, the hyperspectral data consist of 144
bands (380-1050nm) with 2.5m of spatial
resolution. We have used the labeled pixels of
the following three classes: “Grass Healthy”,
“Water” and ‘Soil’. This dataset was made
available by the Image Analysis and Data
Fusion Technical Committee of IEEE GRSS in
2012.
3.1. Multi-layer perceptron architecture: The
architecture used for the spectral signature
generation is not based on any particular one.
The number of layers, neurons, normalization
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and activation functions were selected
empirically, based on intensive testing. The
architecture is presented in Figure 5.

Figure 3. Big picture of the Multi-Layer Perceptron
used for the spectral signature generation.

3.2. Training: Our Neural Network has two input
neurons, the inputs are the ground truth and the
reflectance values obtained from a gray-scale
version of a RGB image from real hyperspectral
data. Adam optimization algorithm is used for
training, with Mean Squared Error loss function,
comparing the regression with the
corresponding real spectral signature.
3.3. Prediction: For the prediction, the input is
feeded with the reflectance value generated in
UE in gray-scale and the ground truth
previously generated procedurally. With this, we
introduce correlation between the virtual world
and the predicted spectral signature.
3.4 Results:
Figure 4 shows the RGB version of one
realization, product of the renderization of the
virtual world.

Figure 4. RGB renderization of the virtual world.

In Figure 5 is shown a spectral signature
comparison between the ones of the University
of Houston dataset and the ones generated by
the trained MLP on average. The predicted
spectral signatures show the characteristic
shape of each class, if the same reflectance is
used (as the original dataset), we get an almost
perfect match. If the reflectance value is taken
from the simulator, the spectral signature on

average is different, but it preserves the
characteristic shape of the class.

Figure 5. Comparison (on average) between Houston
dataset spectral signatures and the spectral
signatures generated by the trained model. Superior
graphic: same reflectance as the original. Inferior
graphic: reflectance from simulator.

3.5 Open issues: The proposed framework was
developed in limited time as an undergraduate
academic project. In consequence, we have
implemented the simplest solution to test the concept
on every step. There is room for improvement for the
spectral signature generation and procedural
generation, using state of the art models and
algorithms. Moreover, it is possible to add more
classes (e.g. snow, different classes of vegetation
and soil, etc.) and fixed-pattern objects, such as
urban structures and clouds with his respective
projected shadows over the earth surface.

CONCLUSIONS
We achieved a hyperspectral image generator
composed of two parts: the virtual world
simulation implemented in Unreal Engine
(v4.26) and the hyperspectral data generator
itself implemented in Python (v3.7). The
spectral signature is predicted through a
Multi-Layer Perceptron, trained with real
spectral data from the University of Houston
dataset. With the tools that UE graphic engine
provides we managed to generate
hyperspectral images of any size, all from the
simulation's camera pixels. Furthermore, the
simulation parameters can be easily defined
through a user interface. Even though this is a
project addressed to a specific group of
scientists, it can be used as an educational tool.
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